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SUMMARY

Single-cell RNA sequencing (scRNA-seq) technolo-
gies are poised to reshape the current cell-type
classification system. However, a transcriptome-
based single-cell atlas has not been achieved for
complex mammalian systems. Here, we developed
Microwell-seq, a high-throughput and low-cost
scRNA-seq platform using simple, inexpensive de-
vices. Using Microwell-seq, we analyzed more than
400,000 single cells covering all of the major mouse
organs and constructed a basic scheme for a mouse
cell atlas (MCA). We reveal a single-cell hierarchy for
many tissues that have not been well characterized
previously. We built a web-based ‘‘single-cell MCA
analysis’’ pipeline that accurately defines cell types
based on single-cell digital expression. Our study
demonstrates the wide applicability of the Micro-
well-seq technology and MCA resource.
INTRODUCTION

Cellular identity is defined by a unique combination of expressed

genes. Since the discovery of the cell as the fundamental unit

of life, investigators have sought to characterize and classify

cell types based on their properties (Regev et al., 2017). At first,

cells were mainly characterized by their position, shape, and

cellular components; cell-type definition heavily depended

on improvements in microscopy. Later, immunohistochemistry,
fluorescence-activated cell sorting (FACS), and fluorescence in

situ hybridization (FISH) facilitated the use of gene expression

markers for cell classification (Regev et al., 2017). These technol-

ogies revealed heterogeneity within morphologically similar cell

populations. Subsequent studies associated molecular pheno-

types with cellular functions and achieved remarkable advances

in distinguishing cell types. Nonetheless, current cell-type classi-

fication systems depend on markers that are largely chosen

based on serendipitous discovery. The choice of markers often

varies among different laboratories, leading to difficulties in

comparing results. Cross-tissue comparison is challenging as

a given marker system, and preferred assay may differ for

different tissues.

Recent advances in single-cell gene expression analysis offer

an opportunity to greatly enhance cell identification and classifi-

cation. Emerging methods, such as high-throughput single-cell

qPCR (Dalerba et al., 2011; Guo et al., 2010; Han et al., 2017),

single-cell mass cytometry (Bendall et al., 2011), and single-

cell mRNA-seq (Hashimshony et al., 2012; Ramsköld et al.,

2012; Shalek et al., 2013; Tang et al., 2009; Treutlein et al.,

2014) allow for dissection of cell heterogeneity at high resolution.

Massively parallel assays can process thousands of single cells

simultaneously to measure transcriptional profiles with rapidly

decreasing costs (Fan et al., 2015; Gierahn et al., 2017; Klein

et al., 2015; Macosko et al., 2015). Other methodologies, such

as single-cell genome analysis (Hou et al., 2012; Navin et al.,

2011; Wang et al., 2012; Xu et al., 2012), epigenome analysis

(Buenrostro et al., 2015; Cusanovich et al., 2015; Guo et al.,

2017; Jin et al., 2015; Lorthongpanich et al., 2013; Mooijman

et al., 2016; Nagano et al., 2013; Smallwood et al., 2014), and

in situ analysis (Chen et al., 2015; Ke et al., 2013; Lee et al.,
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2014), may provide further information regarding genetic and

epigenetic regulation of gene expression as well as cellular and

subcellular localization of biomolecules. With ongoing technical

advances, a consensus has emerged that it is now time to build

a comprehensive single-cell genomic database that includes all

mammalian cell types (Regev et al., 2017).

Here, we describe Microwell-seq, a simple method to profile

thousands of single cells by transcriptome analysis utilizing

an agarose-constructed microwell array and barcoded beads.

Microwell-seq has advantages in convenience and simplicity,

which should make the method widely accessible. Using

Microwell-seq, we constructed a first stage ‘‘mouse cell atlas’’

with more than 400 k single-cell transcriptomic profiles from 51

mouse tissues, organs, and cell cultures. The resulting map

covers more than 800 major cell types and potentially more

than 1,000 cell subtypes in the mouse system. We integrated

published high-throughput single-cell data and built the

MCA website database for the scientific community. Finally,

we constructed a ‘‘single-cell MCA (scMCA)’’ tool that accu-

rately defines cell types based on single-cell digital expres-

sion. Future efforts in data accumulation and integration will

eventually lead to creation of a comprehensive mammalian

cell map that will facilitate related basic research and clinical

applications.

RESULTS

Microwell-Seq: A Convenient, Low-Cost, and Robust
Platform for High-Throughput scRNA-Seq
To establish a cost-effective single-cell technology that is widely

accessible, we combined the advantages of existing methodol-

ogies (Fan et al., 2015; Klein et al., 2015; Macosko et al., 2015) in

designing the Microwell-seq method. In Microwell-seq, individ-

ual cells are trapped in an agarose microarray and mRNAs are

captured on magnetic beads. The processes for bead synthesis

and microarray fabrication are shown in Figure S1. Barcoded

beads are synthesized by 3 split-pool rounds (Figure S1A; Table

S1). Each oligonucleotide consists of a primer sequence, a cell

barcode, a unique molecular identifier (UMI), and a poly T tail

(Fan et al., 2015; Islam et al., 2014). Fabrication of the agarose

microarray is simple and inexpensive (Figure S1B). The silicon

and PDMS chips are reusable, meaning that a single silicon

chip can be employed to generate many agarose microarrays.

The size of the agarose chip can be readily adjusted by making

different-sized PDMS chips for a wide range of input sample

sizes and concentrations. Only minutes are required to make

an agarose chip for each experiment.

The workflow of Microwell-seq is shown in Figure 1A. An

agarose plate with 105 microwells is used to trap 5–10 K individ-

ual cells, similar to the Cytoseq platform (Fan et al., 2015). After

cells (50–100 K) are loaded into the wells, the microwell array is

inspected under amicroscope and rare cell doublets are washed

out with a capillary tube. The capture efficiency and cell quality

are estimated. Barcoded magnetic beads are then loaded and

trapped into each well by size. Each single bead is conjugated

with 107–108 oligonucleotides, which share the same cellular

barcode (Figures S1C and S1D). After incubation of beads and

cells in a soft flow of lysis buffer, beads with captured mRNA
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are retrieved with a magnet. The procedure from cell loading to

cell lysis takes �15 min. Beads are collected in a 1.5 mL tube

in which reverse transcription and template switch steps are per-

formed using the Smart-seq2 protocol (Picelli et al., 2013).

Amplified cDNA is fragmented by a customized transposase

that carries two identical insertion sequences (see the STAR

Methods). The 30 ends of the transcripts are then enriched during

library generation using PCR and sequenced using the Illumina

Hiseq platform (Table S2).

To assess the fidelity of themethod, we performedmixed spe-

cies experiments with cultured human (293T) and mouse (3T3)

cells. We identified the ratio of reads mapped to both the human

andmouse genome in each single cell (Figure 1B). We found that

Microwell-seq produced high-fidelity single-cell libraries with no

more than 1.2% cell doublets. Approximately 6,500 genes and

55,000 transcripts can be detected, on average, by saturated

sequencing (Figure 1C). Low reads versus the gene number ratio

was observed in large-scale experiments (Figure 1D). Cell-cycle

scores were calculated for each human 293T cell based on pre-

viously reported phase-specific genes and methods (Macosko

et al., 2015) (Figure 1E). Cells at different cell-cycle stages

were clearly separated based on their cell-cycle scores. By

integrating our Cj7 mES Microwell-seq data with the pub-

lished comparative analysis for different single-cell mRNA-seq

methods (Svensson et al., 2017; Ziegenhain et al., 2017), we

observed a sensitivity and accuracy that were comparable with

those of other available methodologies (Figures S2A–S2C).

Notably, Microwell-seq showed advantages in doublet rate

and cost (Figures S2D and S2E). It detected more genes than

other high-throughput single-cell mRNA-seq methods in the

range of middle to low sequencing depth (Figures S2A and

S2B). We then analyzed 4,323 thawed single cells of CD34+

and CD34� compartments from mobilized human peripheral

blood (mPB). We observed a clear distinction between the two

populations (Figure S2F). ThawedmPBCD34+ cells from batch 1

and batch 2 showed little batch effects on a t-distributed sto-

chastic neighbor embedding (t-SNE) map (Figure S2G). Notably,

Microwell-seq worked reliably with thawed cells.

Construction of Mouse Cell Atlas Using Microwell-Seq
By harnessing the power of Microwell-seq, we embarked

on creating an atlas of all major mouse cell types with minimal

input from traditional classification schemes (e.g., FACS). We

collected mammary gland (virgin, pregnant, lactation, and invo-

lution), uterus, bladder, ovary, intestine, kidney, lung, testis,

pancreas, liver, spleen, muscle, stomach, bonemarrow, thymus,

prostate, cKit+ bone marrow, bone marrow mesenchymal cells,

and peripheral blood samples from 6- to 10-week-old C57BL/6

mice. We collected E14.5 fetal liver, fetal lung, fetal stomach,

fetal gonad, fetal brain, fetal intestine, fetal placenta, andmesen-

chymal tissues in addition to neonatal brain, neonatal skin,

neonatal calvaria, neonatal rib, and neonatal muscle samples.

Tissues were carefully washed and prepared into single-cell sus-

pensions with optimized protocols (Table S3). We also included

several cultured cells derived from mouse tissues: 3T3 cells,

embryonic stem (ES) cells, trophoblast stem (TS) cells, and

mesenchymal stem cells (MSCs). Single cells were then pro-

cessed with Microwell-seq.
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Figure 1. Workflow and Evaluation of Microwell-Seq

(A) A schematic of the basic workflow for Microwell-seq.

(B) Human-mouse mix test using Microwell-seq. Human (293T) and mouse (3T3) cells were mixed at equal concentrations. The scatterplot shows the number of

human and mouse transcripts associated with each cellular barcode. Blue dots indicate single cells that were human-specific; red dots indicate single cells that

were mouse-specific. Only 0.6% (purple dots) are human-mouse mixed cells.

(C) The distribution of gene number and transcript number in 9 deeply sequenced beads (3T3 cell captured) are shown by violin plots.

(D) Detected gene number versus read number of each individual cell in the species-mixing experiment.

(E) Cell-cycle state of 337 human (293T) cells measured byMicrowell-seq. The score for each phase was calculated using a previously reportedmethod (see data

analysis in the STAR Methods). The cells were ordered by their phase scores.

See also Figures S1 and S2 and Tables S1 and S2.
The sequencing data were processed using published pipe-

lines (Macosko et al., 2015; Satija et al., 2015). In total, we

analyzed >400,000 single cells from >50 mouse tissues and

cultures (Figure 2A). In a global view, we identified >800 cell

types grouped into 98 major clusters using 60,000 cells sampled
from the complete dataset (Figure 2B; Table S4). We found that

multiple tissues, including liver, muscle, and placenta, contrib-

uted to the defined hematopoietic cell clusters, such as Clusters

3, 14, and 27 (C3, C14, and C27), suggesting that the cell identity

defined by single-cell transcriptome data is unaffected by batch
Cell 172, 1091–1107, February 22, 2018 1093
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effect in Microwell-seq experiments from different tissues (Fig-

ures 2B and 2C). Other clusters with significant multi-tissue

contributions correspond to stromal cells (C28), endothelial cells

(C17), neurons (C21), and myocytes (C2). These data encom-

pass the most comprehensive genetic module repertoire yet

described for the mouse (Figure 2D; Table S5). We performed

t-SNE analysis and differential gene expression analysis for

each specific organ type and uncovered previously unrecog-

nized cell heterogeneity in a wide range of mouse tissues

(Table S5).

To enable public access to these data, we constructed the

mouse cell atlas website at http://bis.zju.edu.cn/MCA. The web-

site enables browsing of processed single-cell data for all tissues

and searching for genes of interest in the dataset (Figures S3A

and S3B).

Microwell-Seq Dissects Cellular Heterogeneity in
Diverse Mouse Tissues
Initial MCA data were collected from mouse embryonic stem

(mES) cells and mouse trophoblast stem (mTS) cells. In mES

cell culture, we detected Actb_high, Rps28_high, Nedd4_high,

and 2-cell-like mES subpopulations. The rare 2-cell-like mES

cluster specifically expresses Zscan4d, Zscan4a, and Zsan4c,

as well as groups of predicted genes, such as Gm5662,

Gm8994, and Gm8300; these signatures strongly resemble

middle and late 2-cell-stage mouse blastomeres (Figure S3C;

Tables S4 and S5). InmTS cell culture, we detectedMrpl12_high,

Mrpl55_high, and Rps28_high subpopulations, as well as a Krt8+

epithelium that appears to resemble an in vivo trophoblast pro-

genitor cell type expressing Gjb3, Hand1, Rhox6, and Rhox9

(Figure S3D; Tables S4 and S5). Interestingly, for both mES

and mTS cells, there was an Rps28_high subpopulation ex-

pressing Rps28, Rps29, Ppia, and Cox7c; these signatures

strongly resemble 8-cell-stage mouse blastomeres in the

preimplantation embryo dataset (Table S5). With success in

mouse cell line experiments, we then moved our analysis to

more complex organs, including adult mouse mammary gland,

kidney, lung, and E14.5 placenta.

The mammary gland provides a unique model for studying

organ tissue specification, as it is the only glandular organ that

reaches full development after birth. In our study, we digested

the gland and were able to create a single-cell expression

map for the entire tissue (Figures 3A–3C; Table S5). Two inde-

pendent Microwell-seq experiments analyzing mammary glands

collected from virgin mice exhibited a minimal batch effect (Fig-

ure 3A). Several distinct cell types emerged in analysis of preg-

nantmammary glands comparedwith virgin samples (Figure 3B).

C18 is defined as luminal cells, due to its specific expression of

Krt8, Krt18, and Fgg, whereas myoepithelial cells (C17) express
Figure 2. Mapping Mouse Cell Atlas Using Microwell-Seq

(A) Number of cells currently processed at MCA.

(B) t-Distributed stochastic neighbor embedding (t-SNE) analysis of 60,000 single

are labeled in the t-SNE map.

(C) t-SNE analysis of 60,000 single cells sampled from mouse cell atlas data. Tis

(D) A hierarchical clustering heatmap showing differentially expressed genes (r

corresponds to a high expression level; purple and black correspond to low exp

See also Figure S3 and Tables S3, S4, and S5.
Krt5 and Krt14, as well as the smooth muscle markers Mylk and

Myl9 (Shackleton et al., 2006) (Figure 3B; Table S5). During preg-

nancy, glands of virgin adult mice develop an extensive network

of secretory alveoli (C1) derived from the ductal luminal that

highly express Csn1s1, Csn3, Csn2, and Wfdc18. We found

that the Elf5+, Krt8+, and Krt18+ population, which is considered

to contain a luminal progenitor pool (C7), expands remarkably

during pregnancy (Rios et al., 2014). The ratio of secretory alveoli

cells increases dramatically in the lactating mammary gland

and then drops to a normal level during mammary gland

involution (Table S5). Moreover, we observed a large category

of mammary gland resident immune cells, including T cells

(C2, C3, C6, C11, C13), B cells (C4), natural killer (NK) cells

(C10, C16), dendritic cells (C8, C12), monocytes (C9), and mac-

rophages (C14). We also found two major types of stromal cells

(C5, C15) that may play different roles in supporting mammary

gland development.

The kidney is a complex blood filtration system that eliminates

toxic products from the body and maintains fluid homeostasis.

Previous studies used microdissection to identify markers for

different regions (Cheval et al., 2011); however, systematic

cell-type classification at the single-cell level has not been

achieved in the adult mouse kidney. Our study covers kidney

cells related to the whole process of urine production, from

glomeruli to ureters (Figures 3D and S3E; Table S5). C12 and

C15 are fenestrated endothelial cells expressing Plvap and

Tm4sf1. As presented in Figure 3D, the tSNE map revealed an

expression trajectory from C1 to C11 and then to C6. C1 is

defined as proximal tubule brush border cells that express

Miox,Gsta2,Ass1, andRida. C6 represents a type of S1 proximal

tubule cell characterized by high expression of Alpl, Slc5a2,

G6pc, and Nox4. C11 might be a novel cell type physically be-

tween brush border cell and S1 cells. The Osgin1+ C4 is sus-

pected to represent S2 cells. S3 proximal tubule cells (C8) ex-

press Kap, Keg1, Napsa, and Slc22a13. The loop of Henle (C2)

connects the proximal convoluted tubule with the distal convo-

luted tubule. Gene expression of C3, C9, and C14 forms another

trajectory: distal tubule cells (C3 and C9) are characterized by

expression of Slc12a3, Pgam2, and Wnk1 (Cheval et al., 2011),

while connecting tubule cells (C14) share features of both the

distal tubule and collecting duct. The collecting duct contains

two cell types, principal cells (C13) and intercalated cells (C5

and C7). C18 and C23 are two epithelial cell types in the kidney.

We also identify an uncharacterized endothelial cell type C17

with high expression of Epcam, Slc4a11, and Slc31a2. The line-

age specificity and spatial expression pattern of these identified

markers can be further verified through other publicly available

datasets, such as the Mouse Anatomical Atlas (Diez-Roux

et al., 2011). As examples, we obtained in situ data for C6, as
cells sampled from mouse cell atlas data. Ninety-eight main cell type clusters

sue types are labeled in the t-SNE map.

ow) across 60,000 mouse cells clustered into 98 cell types (column). Yellow

ression levels.
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well as C17, and show their distinct positions in the E14.5 kidney

(Figure 3E). In addition, we detected five stromal cell populations

(C16, C21, C25, C27, and C28), T cells (C19), B cell (C26),

Ccr7-high dendritic cells (C22), Cst3-high dendritic cells (C24),

S100a8-high neutrophil progenitors (C29), and two types of

macrophages (C9, C20). Cell-type correlation analysis of our

data with pre-published mouse kidney single-cell data suggests

a strong overlap withmarkers and cell types from the two studies

(Figure S4A). Functional experiments with reporter mice will be

needed to verify the biological significance of these cell types.

The lung is the primary organ for gas exchange in mammals.

Previous studies have focused on profiling embryonic alveolar

epithelium using single-cell RNA sequencing (RNA-seq) (Treut-

lein et al., 2014). Here, by analyzing the whole adult mouse

lung tissue, we defined 32 distinct clusters with specific molec-

ular markers (Figures 4A and 4B; Table S5). Batch effects from

three independent experiments were minimal (Figure 4C). The

cell subpopulations inferred from this analysis were readily

matched to known lung cell types, including four previously re-

ported alveolar epithelial cell types: alveolar type 2 (AT2) cells

(enrichment of surfactant-associated protein family genes Sftpc,

Sftpa1, and Sftpb in C1, Figure 4D), alveolar type 1(AT1) cells

(enrichment of Pdpn, Ager, and Clic5 in C14), Clara cells (enrich-

ment of secretoglobin family genes Scgb1a1, Scgb3a2 in C12),

and ciliated cells (enrichment of 1110017D15Rik and Foxj1 in

C18). Notably, we identified alveolar bipotent-like cells (C27)

coexpressing the AT1 markers Ager, Emp2, and Aqp5, as well

as the AT2 markers Sftpd and Sftpa1. In addition, C27 is very

different from AT1 and AT2 because of its high expression of

the epithelial markers Krt8 and Krt18. This is the first evidence

to show that bipotent progenitors might exist in the adult

mammalian lung. As an example, we show that two Clara cell

markers, Aldh1a1 and Cyp2f2, are already expressed in the tra-

chea as early as embryonic day 14.5 (Figure 4E). Lung-resident

immune cells play important roles during lung infection and tis-

sue repair. We characterized both F4/80-low, Siglecf.+, Marco+

alveolar macrophages (C3 and C26) and F4/80-high, MHC II+

interstitial macrophages (likely to be C8), which confirms the het-

erogeneity of lung-resident macrophages. The previously un-

characterized Pclaf-high alveolar macrophages (C26) corre-

spond to cycling cells with high expression of Ccna2. Dendritic

cells (DCs) are derived from various origins and can be catego-

rized as conventional DCs (cDCs) or plasmacytoid DCs (pDCs).

Both Cluster 15 and 9 express integrin Cd11c and MHC II and

thus can be inferred as cDCs. These can be further divided

into Cd11b-expressing cDCs (C15) and Cd103-positive cDCs

(C9), as previously reported (Kopf et al., 2015). C22 and C32

correspond to dividing cDCs due to their high expression of

Ccnb2. C5 is predicted to be pDCs because of its expression

of Irf5, Irf7, and Bst2. We identified two other DC subtypes,

namely, Gngt2-high DCs (C13) and H2-M2-high DCs (C29).
(C) A gene expression heatmap showing the top differentially expressed genes

corresponds to a high expression level; purple and black correspond to low exp

(D) A t-SNE map of mouse kidney single-cell data. Cells are colored by cell-type

(E) In situ hybridization assay validated expression of the S1 proximal tubule ce

Slc4a11 and Slc31a2 in E14.5 mouse embryonic kidney.

See also Figure S4.
Among 32 clusters, 3 populations shared common endothelial

cells markers (Pecam1, Flt1, Chd5, and Kdr), while each cluster

possessed distinct markers used to categorize them as artery

(cluster 17), vein (cluster 19), and capillary (cluster 20) endothelial

cells (Figures 4A, 4B, and 4D). Clusters 10, 11, and 23 broadly

expressed genes of the lung mesenchyme program. However,

C10 is marked by high Dcn expression; C11 is marked by high

Inmt and Cxcl14 expression; C23 highly expresses Acta2 (Fig-

ure 4D). Comparison of the adult and embryonic lung single-

cell data suggests that at least two types of stromal cells (C10

and C23) are already present in the E14.5 developing lung (Fig-

ure S4B). The Inmt-high stromal cells (C11) are suspected to

be a progeny of the Dcn-high population. Based on known

markers, additional clusters correspond to Cd8-positive T cells

(C4), dividing T cells (C24), B cells (C2), Ig-producing B cells

(C28), natural killer (NK) cells (C6), eosinophils (C7), nuocytes

(C16), neutrophils (C21), basophils (C30), and monocytes (C31)

(Figure 4B; Table S4).

The placenta is an organ that connects the developing fetus to

the uterine wall. Analysis of E14.5 mouse placenta tissue re-

vealed 28 cell clusters (Figures 5A and 5B; Table S5). C1, C2,

C5, C10, C15, C17, and C25 have trophoblast characteristics.

The trophoblast stem cell marker Tfap2c was highly expressed

in C2, C5, C17, and C25. C2 expresses Gjb3, Hand1, Ldoc1,

Phlda2, and Lad1, resembling recently reported Gjb3+ progeni-

tor trophoblasts (Nelson et al., 2016) (Figure S4C). C5 is a type

of spiral artery trophoblast giant cell (SpA-TGCs). C17 appears

to be an uncharacterized trophoblast progenitor type with high

expression of Taf71, Isg20, and Foxo4. C25 is a type of labyrin-

thine trophoblast progenitor that expresses Tfap2c, Epcam, and

Ly6e. C1 expresses Prl7d1, Prl7a2, Prl3b1, Prl8a1, and Tpbpa

(Figure 5C). C10 and C15 are both spongiotrophoblasts with

high expression ofDio3 andPhlda2 (Plasschaert andBartolomei,

2014). In addition, we identify B cells (C24), NKT cells (C26), uter-

ine natural killer (uNK) cells (C19), erythroid cells (C16), macro-

phages (C3, C9), neutrophils (C18), basophils (C21), monocytes,

DCs (C8), megakaryocytes (C28), hematopoietic stem and pro-

genitor cells (C23), granulocyte monocyte progenitors (C27),

and an unknown immune progenitor type (C20). C13 has high

expression of decidual stromal cell markers, including Prl8a2,

Cryab, Adm, and Angpt4. C11 and C22 are two other types of

stromal cells. C6 and C7 represent two endodermal cell types

that share both epithelial and mesenchymal characteristics.

They express Sox17, Lama1, Lamb1, and Gata4, suggesting

that they may originate from a primitive endoderm lineage. Sur-

prisingly, we found an endodermal cell cluster (C14) that highly

expressed Afp, Ttr, Apoa1, and Apoa2, a signature that strongly

resembles hepatocytes (Figure 5C). Trajectory analysis revealed

distinct developmental branches of the endodermal and hepato-

cyte-like cells in the E14.5 placenta (Figure S4D). Immunocyto-

chemistry located the position of SOX17- and HNF4A-positive
for each cell cluster in mouse virgin mammary gland single-cell data. Yellow

ression levels.

cluster.

ll markers Slc5a2 and Slc34a1, as well as the kidney endothelial cell markers
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cells to the surface of the fetal-placental interface (Fig-

ure 5D). The function of the placental hepatocyte-like cells and

their influence on other placental cell lineages require further

investigation.

Similarly, in the mouse fetal, neonatal, and adult brain, we

identified different types of oligodendrocytes, astrocytes, neu-

rons, Schwann cells, ependymal cells, radial glia, microglia,

endothelial cells, macrophages, and granulocytes (Figure S4E;

Table S5) and then correlated the cell types with the published

single-cell signatures from the mouse cortex and hippocampus

(Zeisel et al., 2015). In the mouse adult bone marrow, we identi-

fied all hematopoietic lineage cells, including neutrophils, mono-

cytes, macrophages, dendritic cells, mast cells, erythroblasts,

eosinophils, B cells, T cells, NK cells, and hematopoietic stem

and progenitor cells (Table S5) and then constructed a lineage

trajectory (Figure S4F). In the same way, we defined cellular

components in all the other tissues (Figures S5 and S6). The

defined cell-type clusters and cluster-specific markers are sum-

marized in Table S5 and on the MCA website.

Mouse Cell Atlas Reveals the Cross-Tissue Cellular
Network
An asset of our study is the use of a single platform for generation

of all MCA datasets. Consistency in technology is important

for comparison of datasets from different tissues. Using MCA

data, we were able to reveal the previously uncharacterized

cross-tissue cellular hierarchy.

To systematically understand the relationships between

different cell types, we built correlation-based networks at the

cell-type level and tissue level. To this end, we used the reduced

dataset with 60,000 cells grouped into 98 cell clusters defined in

Figure 2A (Table S4). To reduce noise, we averaged the expres-

sion of every 100 cells within each cluster. We then formed a cor-

relation network using pairwise Spearman correlation between

these averaged cells. The resulting correlation map mimics a

cellular landscape for different mouse tissue types (Figure 6A).

In brief, embryonic stem cells and testicular cells form isolated

networks. The mesenchymal-epithelial axis and endothelial-he-

matopoietic axis are the two most interconnected network

groups in the mouse system. The extensive edges along these

two axes may help to explain transitions between mesenchymal

and epithelial cell types, as well as hematopoiesis emerging from

endothelial tissues. Other notable cellular correlations include

stomach and small intestine epithelial cells, trophoblasts and

primitive endoderm epithelial cells, and astrocytes and oligoden-

drocytes, as well as different kidney tubule cells (Figure 6A).

In the MCA cellular network, there are two types of cells that

contribute to the vast majority of organs and tissues: stromal

cells and tissue-resident immune cells. We aimed to investigate
Figure 4. Resolving Cellular Heterogeneity in Lung

(A) A t-SNE map of mouse lung single-cell data. Cells are colored by cell-type cl

(B) Dot plot visualization of each cell type in lung single-cell data. The size of the d

average expression level.

(C) A t-SNE map of mouse lung single-cell data. Cells are colored by experimen

(D) t-SNE maps of mouse lung single-cell data with cells colored based on the ex

indicated by shades of red.

(E) In situ hybridization assay for the two identified Clara cell markers Aldh1a1 an
the previously uncharacterized hierarchy of stromal cells in the

mammalian system. Stromal cells are connective tissue cells

that support the function of parenchymal cells. We first defined

stromal cell populations in individual tissues based on expres-

sion of collagens, laminins, elastin, and fibronectin. We then

integrated the stromal cell data and observed heterogeneity

across diverse mouse organs and tissues (Figures 6B and 6C;

Table S6). The merged stromal cell data can be divided into 21

groups. C1 cells come from neonatal calvaria and neonatal rib,

and they aremarked byCol9a1,Col9a3, andCol2a1; they should

be related to cartilage development. C21, which is close to C1 on

the tSNE map, comes from embryonic mesenchymal tissues.

C21 shares similar signatures with C1, but expresses higher

levels of cartilage-specific genes, such as Matn1, Matn4, and

Sox9. C5 stromal cells have higher levels of imprinted genes,

such as Dlk1, H19, and Igf2; they come from neonatal muscle

and neonatal skin tissues. C15, which is connected with C5,

exhibits myogenic signatures with high expression of Acta1

and Tnnc2. C8 and C20 stromal cells are mainly contributed by

mammary gland tissues and are marked by metalloproteinase

and fibronectin expression, respectively. C7 contains contribu-

tions from a wide range of tissues, such as the lung, bladder,

testis, stomach, liver, and small intestine. This type of stromal

cell is marked by high Inmt expression; it also expresses the anti-

oxidant enzyme Sod3, which is thought to protect tissues from

oxidative stress. C12 and C17 are two types of bladder-specific

stromal cells with high expression of Bmp4 and Wnt2. C12 ex-

presses high levels of Cxcl12 and the proliferation marker Ifitm1,

while C17 expresses a high level of Bmp5. Both the testis and

neonatal heart contribute to C9 stromal cells. C6 represents

pancreas-specific stromal cells that express Col15a1, Gdf10,

andCol4a1. Uterus-specific C2 is a novel stromal cell population

that is marked by Col6a4 and Col6a3, as well as many predicted

genes, such as Gm11361, Gm12248, and Gm8797. C10

also comes from the uterus; it highly expresses Mmp11 and

Cxcl12. C19 are placental decidual stromal cells that express

Prl8a2 and Cryab. C4 and C13 are both from bone marrow

mesenchymal samples. C4 corresponds to osteoblasts with

high levels of Bglap, Bglap2, Col1a1, and Col11a1. C13 is

marked by chondrocyte genes, such as Col10a1, Col2a1, and

Matn3. With contributions from the most diverse tissues, C3 is

identified as pericytes due to Acta2, Pdgfrb, Mcam (Cd146),

and Vim expression. C14 also represents pericytes; it differs

from C3 by high Cspg4 (NG-2) expression. Notably, C3 and

C14 (including bone marrow-specific pericytes) express high

levels of important signaling molecules, such as Kitl, Pdgfa,

and Tgfb2, suggesting that they have important roles in regu-

lating tissue microenvironments. C16 is a kidney-specific stro-

mal type. C11 cells correspond to myoblasts. C18 corresponds
uster.

ot encodes the percentage of cells within a cell type, and the color encodes the

tal batch.

pression of marker genes for particular cell types. Gene expression levels are

d Cyp2f2 in E14.5 mouse embryos.
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to high-passage mouse embryonic fibroblasts in culture. Many

of these stromal cells are already present in the tissues at embry-

onic stages (Table S5). They play important roles in proper organ

development, regeneration, and function.

Tissue-resident macrophages are unique myeloid cells that

self-renew independent of hematopoietic stem cells (Gomez

Perdiguero et al., 2015). However, cross-tissue heterogeneity

of tissue-residentmacrophages has not beenwell characterized.

We merged single-cell transcriptome data of macrophages

from diverse tissues to search for subclasses. We found that

macrophages can be classified into 13 subtypes (Figures 6D

and 6E; Table S6). They show preferential expression of different

C-type lectin domain family proteins. C1 macrophages, which

come from the uterus, ovary, and mammary gland, highly ex-

pressCd74,Ms4a7,C1qc,Clec7a, and F4/80 (Adgre1). C4mac-

rophages can be found in a wide range of tissues, such as the

mammary gland, testis, bladder, and pancreas; they express

Cd209f, Clec10a, and Cd209 g. Macrophages from the placenta

(C5) specifically express Spp1, Arg1, Clec4d, and Clec4n. In the

lung, two types of macrophages were identified: interstitial mac-

rophages were merged into C1; alveolar macrophages, enriched

with the markers Ear1, Ear2, Marco, and Siglecf., were grouped

into C7. C8 was identified as Kupffer cells from the liver, with

specific expression of Clec4f, Clec1b, and Macro. C12, which

is another liver-specific macrophage subtype, expressesClec4e

and Clec4d. C9 macrophages are of peripheral blood origin

and express Adgre4, Adgre5, Clec4a3, and Clec4a1. C13 cells

are mammary gland-resident macrophages that highly express

Retnla, Clec4b1, and Ear2. Through organ maturation, tissue-

resident macrophages appear to become increasingly special-

ized to adapt to the organ environment and organ function.

In the same way, we performed cross-tissue analysis for

both endothelial cells and dendritic cells (Table S6). Our analyses

revealed a wide diversity of tissue-specific mesenchymal and

immune cells. The accurate identification of these cellular sub-

types should contribute to improved understanding and moni-

toring of tissue regeneration. Stromal cells, endothelial cells,

macrophages, and dendritic cells are integral parts of the tissue

microenvironment. Successful organ engineering depends not

only on efficient generation of parenchymal cells but also on

proper integration of the supporting cells.

Single-Cell MCA Analysis Pipeline Defines Cell Types
with Accuracy and Efficiency
Having constructed a basic scheme for a mouse cell atlas data-

base, we then sought to utilize the defined cell types as refer-

ences for an unbiased classification of single-cell transcriptome

data. Previous studies have used population gene expression

profiling for determination of engineered cell types (Cahan
Figure 5. Resolving Cellular Heterogeneity in Placenta

(A) A t-SNE map of E14.5 mouse placenta single-cell data. Cells are colored by

(B) A gene expression heatmap showing top differentially expressed genes for ea

high expression level; purple and black correspond to low expression levels.

(C) t-SNE maps of E14.5 mouse placenta single-cell data with cells colored base

levels are indicated by shades of red.

(D) Immunohistochemistry assay of endodermal cell marker SOX17 and HNF4A in

See also Figures S5 and S6 and Table S6.
et al., 2014; Morris et al., 2014). However, these methods over-

look heterogeneity within cell populations, and the reference

cell types are not comprehensive. In the mouse cell atlas, we

seek to establish a pipeline for accurate cell type determination

at the single-cell level. We built the scMCA analysis tool for

this purpose.

In brief, the scMCA analysis was set up through following

steps. First, we integrated Microwell-seq data with published

Drop-seq and 10 3 Genomics data (see the STAR Methods).

We then clustered the data into 894 cell-type clusters and deter-

mined the average expression in each cluster for transcriptome

references. Finally, input single-cell DGE was compared with

each transcriptome reference to provide a match score based

on gene expression correlation (Figure 7A). In high-throughput

scRNA-seq experiments, such as Microwell-seq, Drop-seq,

and 10 3 Genomics, sequencing depth is usually sacrificed;

the average gene number detected for each cell is�1,000. How-

ever, by adding a cluster and averaging step, we obtained cell-

type transcriptome references with digital expression of more

than 10 K genes. Our transcriptome references perform well in

scMCA experiments; a combination of the top 10 markers from

each cell type was sufficient as a gene set for efficient scMCA

calculation (Figures S7A–S7C). As an example, we show that

the placental Afp+ endodermal cells we identified are clearly

mapped to fetal liver hepatocytes, with only one spongiotropho-

blast contamination (Figure S7D).

Importantly, the scMCA analysis is compatible with different

technologies. We first examined C1 single-cell data of mouse

embryonic distal lung epithelium (Treutlein et al., 2014). Figure 7B

shows all correlated cell-type clusters for input single cells. We

found that AT1, AT2, Clara, andCiliated cells defined by Treutlein

et al. (2016) exhibit the best correlation with our adult AT1, AT2,

Clara, and Ciliated cell-type references, respectively. The bipo-

tential progenitors express both AT1 and AT2 signature genes

and correlate with our bipotential progenitor reference. The

only discrepancy between our analysis and the published study

was a single AT1 cell that appeared to show higher correlation

to stromal cells. Next, we examined single-cell data of mouse

hematopoietic stem cell formation (Zhou et al., 2016). The data

were generated using the classical polyA tailing method for sin-

gle-cell mRNA amplification (Tang et al., 2009). The scMCA re-

sults provide a description for the process of HSC emergence

(Figure 7C). Endothelial cells from the study of Zhou et al.

(2016) strongly correlate with endothelial cell clusters in our data-

base. E12 HSCs and E14 HSCs correlate best with our fetal liver

hematopoietic stem and progenitor cell cluster. Interestingly,

T1 and T2 PreHSCs exhibit both endothelial and HSC signa-

tures. The analysis revealed a single ganglion cell as well as a

single macrophage contamination in the dataset. Similarly, we
cell-type cluster.

ch cell cluster in E14.5 mouse placenta single-cell data. Yellow corresponds to

d on the expression of marker genes for particular cell types. Gene expression

E14.5 mouse placenta samples. Arrow, endodermal cells. Scale bars, 100 mm.
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reanalyzed CEL-seq single-cell data by Rizvi et al. (2017) and

observed the transition from pluripotency to neuron lineages.

We also analyzed C1 single-cell data from fibroblast to neuron

transdifferentiation (Treutlein et al., 2016) and confirmed activa-

tion of a myogenetic program in the process and simultaneous

generation of muscle progenitor cells.

We propose using the scMCA pipeline for dissection of more

complex systems. Ezh2 is an important component of Polycomb

repressive complex 2, whichmediates H3K27me3 and regulates

pluripotency in mESCs (Shen et al., 2008). Differentiation of

Ezh2�/� ES cells is impaired. We aimed to utilize the single-cell

approach for comprehensive analysis of the roles of Ezh2 in

different developmental lineages. We compared day 14 embry-

onic body (EB) cells from wild-type and Ezh2�/� mESCs (Shen

et al., 2008) using Microwell-seq coupled with scMCA method-

ology (Figures 7D and 7E). We found that in wild-type EBs,

differentiated cells are mainly mapped to mesoderm MEF cells,

smooth muscle cells, ectoderm neuronal cells, and endoderm

hepatocytes. However, in Ezh2�/� EBs, the majority of the differ-

entiated cells are mapped to two types of placental cells that

appear to be of primitive endoderm origin, suggesting differenti-

ation to extraembryonic tissues (Figure 7E; Table S5). The two

differentiated cell types express high levels of Sox17, Lamb1,

Lama1 and Aqp8, and Vim and Gata4, respectively. Immuno-

staining results suggested a significantly higher percentage of

GATA4- and SOX17-positive cells in the Ezh2�/� EBs (Figure 7F).

Pooled gene expression analysis further confirmed aberrant

activation of the extraembryonic lineage program during differ-

entiation of Ezh2�/� ES cells (Figures S7G and S7H). We infer

that Ezh2 plays essential roles in regulating the epigenetic barrier

between embryonic and extraembryonic tissues. Deletion of

Ezh2 enables mESCs to cross the barrier and transdifferentiate

into extraembryonic cell types.

In summary, we have developed a scMCA application that

faithfully predicts cell types using single-cell data generated

from a wide range of technologies.

DISCUSSION

The Microwell-seq method holds advantages over other related

technologies, largely related to superiority in cost and conve-

nience. A silicon wafer containing �100,000 microwells can be

used to make hundreds of polydimethylsiloxane (PDMS) micro-

pillar arrays, which can be used multiple times to create hun-

dreds of agarose-constructed microwell arrays. The magnetic

property of barcoded beads allows for their efficient collection.

The beads that remain outside of the microwells can be reused.

The cost of sequencing library generation for each cell is esti-

mated to be under 0.02 USD. In addition, microwells with too
Figure 6. Cross-Tissue Cellular Network

(A) A correlation network showing relationships among 98 cell groups defined usin

within each of the 98 cell groups defined in Figure 2B. Each edge corresponds

cluster ID.

(B) A t-SNE map of single-cell data for mouse tissue-specific stromal cells. Cells

(C) A t-SNE map of single-cell data for mouse tissue-specific stromal cells. Cells

(D) A t-SNE map of single-cell data for mouse tissue-resident macrophages. Cel

(E) A t-SNE map of single-cell data for mouse tissue-resident macrophages. Cel
many cell doublets can be washed to reduce doublet rate,

ensuring that Microwell-seq yields high-fidelity single-cell li-

braries. Experiments can be readily scaled up by simultaneous

handling of multiple microwells. Finally, the washing and quality

checking steps before bead capture also ensure removal of cell

debris and clumps that might cause contamination in droplet-

based methods. As exemplified by our study, Microwell-seq

can be usedwith all tissue types. It is a portable, efficient, faithful,

and inexpensive high-throughput scRNA-seq platform.

Using Microwell-seq, we profiled more than 50 mouse organ,

tissue, and cell lines. We dissected cellular components in many

tissues that are not well characterized. It is important to mention

that for everyorganand tissue,weprofilednotonly the tissue-spe-

cific cell lineages but also the tissue-resident stromal and immune

cell types to provide information on tissue microenvironments.

Due to space limitations, here, we have only presented results

for the mammary gland, lung, kidney, testis, and placenta in the

main text. Additional data are deposited on the MCA website.

The complete annotation of the dataset is a continuous project.

Although we have defined most of the major clusters on MCA,

there are many subclusters that remain to be defined by more

focused analysis of a particular population (Table S6). The MCA

website welcomes public discussion, correction, and validation

of annotated cell types. Moreover, the MCA database will be

updated with newly published high-throughput single-cell data

from relevant technologies, such as 103Genomics, Drop-seq,

In-Drop,Seq-well, andddSEQ.Futuredirectionsalso include inte-

gration of proteomic data (such as CyTOF data) and spatial infor-

mation (such as in situ data) with the MCA database to provide a

more complete atlas with multi-omic information.

In conclusion, Microwell-seq provides a highly accessible and

inexpensive platform for single-cell RNA-seq technology. Its

simplicity should facilitate broad use in the community. In addi-

tion, we present a mouse cell atlas, which is the most compre-

hensive mammalian single-cell data resource to date. We intro-

duced the scMCA analysis for accurate cell-type identification

based on single-cell transcriptome data. These new methodolo-

gies should accelerate progress in dissecting cell types and

functions in the mammalian system.
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MCA website This paper http://bis.zju.edu.cn/MCA/gallery.html
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for reagents may be directed to, and will be fulfilled by the Lead Contact, Guoji Guo (ggj@zju.

edu.cn). Commercialized Microwell-seq Kit is available at G-BIO (http://www.igeneseq.com/research_detail/dxbcp/microwell.html).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mouse strains and husbandry
Wild-type C57BL/6J mice were ordered from Shanghai SLAC Laboratory Animal. All mice were housed at Zhejiang University

Laboratory Animal Center in a Specific Pathogen Free (SPF) facility with individually ventilated cages. The room has controlled

temperature (20-22�C), humidity (30%–70%) and light (12 hour light-dark cycle). Mice were provided ad libitum access to a regular

rodent chow diet.

For adult samples, testis and prostate tissues were collected from 8-10 week-old male mice, all the other tissues were collected

from 6-10 week-old female mice. For embryonic (E14.5 embryos) and neonatal (1 day-old pups) samples (except for gonads), sex is

not determined before tissue pooling due to small sample size. More details are listed in Table S3.

All experiments performed in this study were approved by the Animal Ethics Committee of Zhejiang University. All experiments

conformed to the relevant regulatory standards at Zhejiang University Laboratory Animal Center.

METHOD DETAILS

Fabrication of microwell device
The diameter and depth of the microwells were 28 mm and 35 mm, respectively. First, a silicon plate with 100,000 microwells was

manufactured by Suzhou Research Materials Microtech. The silicon microwell plate was then used as a mold to make a PDMS plate
Cell 172, 1091–1107.e1–e7, February 22, 2018 e2

mailto:ggj@zju.edu.cn
mailto:ggj@zju.edu.cn
http://www.igeneseq.com/research_detail/dxbcp/microwell.html
https://jgi.doe.gov/data-and-tools/bbtools/bb-tools-user-guide/bbmap-guide/
https://jgi.doe.gov/data-and-tools/bbtools/bb-tools-user-guide/bbmap-guide/
https://jgi.doe.gov/data-and-tools/bbtools/bb-tools-user-guide/bbmap-guide/
https://github.com/BioInfoTools/BBMap
http://mccarrolllab.com/dropseq/
http://satijalab.org/seurat/
https://github.com/KenLauLab/pCreode
http://zuguang.de/circlize_book/book/
https://cran.r-project.org/web/packages/randomForest/index.html
https://cran.r-project.org/web/packages/randomForest/index.html
http://www.hemberg-lab.cloud/scmap/
http://www.cytoscape.org/
https://cran.r-project.org/web/packages/caret/index.html
https://cran.r-project.org/web/packages/caret/index.html
https://github.com/alexdobin/STAR
https://www.r-project.org
http://bis.zju.edu.cn/MCA/gallery.html


that had the same number of micropillars. Prior to experiments, a disposable agarose microwell plate was made by pouring 5%

agarose solution onto the surface of the PDMS plate. Both the silicon and PDMS plates are reusable. One silicon microwell plate

allows for almost permanent use.

Synthesis of barcoded beads
Magnetic beads coated with carboxyl groups were provided by Zhiyi (diameter 20-25 mm). The barcoded oligonucleotides on the

surface of the beads were synthesized by three rounds of split-pool. All the sequences used are listed in supplementary information

Table S1.

For each batch of bead synthesis, 300-350 mL of carboxyl magnetic beads (50 mg/ml) were washed twice with 0.1 M MES

(2-[N-morpholino]ethanesulfonic acid). The beads were then suspended in 0.1 M MES at a final volume of 635 ml. 3.08 mg of EDC

(1-ethyl-3 (�3-dimethylaminopropyl) carbomiimide hydrochloride) were added to the beads. 6.2 mL of beads were then distributed

into each well of a 96-well plate. 2.5 mL of amino modified oligonucleotide (50uM in 0.1MMES) were then added into every well. After

vortexing and incubation for 20minutes at ambient temperature, 0.5 mLmix (Add 6mg of EDC in 100 mL of 0.1MMES) was distributed

into every well. After another round of vortexing and incubation for 20 minutes at ambient temperature, 0.5 mL more mix (Add 6 mg of

EDC in 100 mL of 0.1 MMES) was distributed into every well. After vortexing and incubate for 80 minutes at ambient temperature, the

beads were collected in 1mL of 0.1MPBS containing 0.02%Tween-20. After centrifugation, supernatant was removed carefully. The

beads were then washed two times in 1 mL of TE (pH 8.0).

In the second split-pool, the beadswerewashedwith water and split into eachwell of another 96well plate containing the PCRmix:

1 3 Phanta Master Mix (Vazyme) and 5 mM oligonucleotides. The oligonucleotides in every tube encoded a sequence that was

reverse complementary to linker 1, a unique barcode and a linker 2 sequence. PCR program was as follows: 94�C 5 min; 5 cycles

of 94�C 15 s, 48.8�C 4min, and 72�C 4min; 4�C hold. The third split-pool procedure was the same as the second one. PCR program

was as follows: 94�C for 5 min, 48.8�C for 20 min, 72�C for 4 min and 4�C hold. The oligonucleotides used in every tube encoded a

linker 2 reverse complementary sequence, a unique barcode, a UMI sequence and a poly T tail. All the oligos were synthesized by

Sangon Biotech with HPLC purification. Beads were resuspended in 1 mL of ddH2O. To remove complementary chains, put beads

into 95�Cwater bath for 6min, separate beads with magnetic separator and remove the supernatant quickly for 2 times. Beads could

be stored in TE-TW (10 mM Tris pH 8.0, 1 mM EDTA, 0.01% Tween20) for 4 weeks at 4�C.

Cell collection and lysis
Cell concentration should be carefully controlled in Microwell-seq. Both cell and bead concentrations were estimated with a hemo-

cytometer. The proper cell concentration is�100,000/ml (with 10%of wells occupied by single cells). The proper bead concentration

is �1,000,000/ml (with every well will occupied by single beads). Evenly distributed cell suspension was pipetted onto the microwell

array, and extra cells were washed away. To eliminate cell doublets, the plate was inspected under amicroscope. Cell doublets were

removed with a capillary tube blowing around the doublet well. Bead suspension was then loaded on the microwell plate, which was

placed on a magnet. Excess beads were washed away slowly. Cold lysis buffer (1 M Tris-HCl pH 7.5, 0.5 M LiCl, 1% SDS, 10 mM

EDTA, and 5 mM dithiothreitol) was pipetted over the surface of the plate and removed after 12 min of incubation. Then, beads were

collected and transferred to an RNase-free tube, washed oncewith 1mL of 63SSC, oncewith 500 mL of 63SSC and then oncewith

200 mL of 50 mM Tris-HCl pH 8.0. Finally, �50,000 beads were collected into a 1.5 mL tube.

Reverse transcription
In this procedure, the instructions from the Smart-seq2 protocol were followed. Briefly, 20 mL of RT mix was added to the collected

beads. The RT mix contained 200 U SuperScript II reverse transcriptase, 1 3 Superscript II first-strand buffer (Takara), 20 U RNase

Inhibitor (Sangon), 1 M betaine (Sigma), 6 mMMgCl2 (Ambion), 2.5 mM dithiothreitol, 1 mM dNTP and 1 mM TSO primer. The beads

were incubated at 42�C for 90minutes (the tubewas shaked every 6min), thenwashedwith 200 mL of TE-SDS (13 TE + 0.5% sodium

dodecyl sulfate) to inactivate reverse transcriptase.

Exonuclease I treatment
After being washed with 200 mL of TE-TW and 200 mL of 10 mM Tris-HCl pH 8.0, beads were suspended in 200 mL of exonuclease I

mix (containing 13 exonuclease I buffer and 1 U/ml exonuclease I (NEB)), and incubated at 37�C for 60 minutes (shake beads every

10min) to remove oligonucleotides that did not capturemRNA. Beadswere pooled andwashed oncewith TE-SDS, oncewith 1mL of

TE-TW and once with 200 mL of 10 mM Tris-HCl pH 8.0.

cDNA amplification
Beads were then distributed to 4 tubes. To every tube, 12.5 mL of PCR mix was added, which included 1 3 HiFi HotStart Readymix

(Kapa Biosystems) and 0.1 mM TSO_PCR primer (Supplementary information, Table S2). The PCR program was as follows: 98�C for

3 min; 4 cycles of 98�C 20 s, 65�C 45 s, and 72�C 6 min; 10-14 cycles of 98�C 20 s, 67�C 20 s, and 72�C 6 min; 72�C 10 min and 4�C
hold. After pooling all PCR products, AMPure XP beads (Beckman Coulter) were used to purify the cDNA library.
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Transposase fragmentation and selective PCR
The purified cDNA library was fragmented by a customized transposase that carries two identical insertion sequences. The custom-

ized transposase was from TruePrep DNA Library Prep Kit V2 for Illumina (Vazyme). The fragmentation reaction was performed

following the instructions of themanufacturer. We replaced the index 2 primers (N533 ) in the kit with our P5 primer (Supplementary

information, Table S2) to specifically amplify fragments that contain the 30 end of transcripts. Other fragments will form self-loops,

which impede their binding to PCR primers. The PCR program was as follows: 72�C 3 min; 98�C 30 s; 14 cycles of 98�C 15 s,

60�C 30 s, and 72�C 3 min; 72�C 5 min and 4�C hold. To eliminate primer dimers and large fragments, AMPure XP beads were

then used to purify the cDNA library. Then, size distributionwas analyzed on an Agilent 2100 bioanalyzer, and a peak at approximately

400�700 bp range should be observed. Finally, the samples were ready for sequencing on an Illumina Hiseq system.

Cell preparation
293T, 3T3 andmesenchymal stem cells (MSC) were cultured in Dulbecco’sModified EagleMedium (DMEM, ThermoFisher) with 10%

Fetal Bovine Serum (FBS, ThermoFisher) and 1% Penicillin-streptomycin (ThermoFisher). E14 and Cj7 embryonic stem (ES) cells

were grown in DMEM supplemented with 15% FBS, 2 mM GlutaMax supplement (ThermoFisher), 1% nonessential amino acids

(ThermoFisher), 0.1 mM b-mercaptoethanol (Sigma), 1% Penicillin-streptomycin and 1,000 U/ml leukemia inhibitory factor (LIF, Milli-

pore) under feeder-free conditions. Trophoblast stem (TS) cells were cultured in Roswell Park Memorial Institute Medium (RPMI,

ThermoFisher) supplemented with 20% FBS, 2 mM GlutaMax supplement, 0.05 mM b-mercaptoethanol, 1 mM sodium pyruvate

(ThermoFisher), 1%penicillin-streptomycin, 25 ng/ml FGF4 (Peprotech) and 1 mg/ml heparin (Sigma) onMouse Embryonic Fibroblast

(MEF) feeders (Tanaka et al., 1998). Cells were harvested by trypsinization and resuspended in cold Dulbecco’s Phosphate-Buffered

Saline (DPBS, Corning) with 2 mM Ethylenediaminetetraacetic acid (EDTA, ThermoFisher) at a density of 1 3 105 cells/ml.

The organs and tissues were isolated from E14.5 embryos, 1-day-old pups or 6- to 10- week-old adult mice (C57BL/6). The

samples were quickly transferred into cold DPBS, and thenminced into�1mmpieces on icewith scissors. Tissue pieces were trans-

ferred to a 15 mL centrifuge tube, rinsed twice with cold DPBS and then re-suspended with 5 mL of dissociation enzymes. Samples

were treated with different enzymes for different durations (Table S3). During the dissociation, tissue pieces were pipetted up and

down gently for several times until there was no visible tissue fragment. The methods for single cell isolation from different tissues

are listed in Table S3. Dissociated Cells were centrifuged at 300 3 g for 5 min at 4�C, and then re-suspended in 3 mL of cold

DPBS. After passing through a 40 mm strainer (Biologix), cells were washed twice, centrifuged at 300 3 g for 5 min at 4�C, and
re-suspended in cold DPBS with 2 mM EDTA at a density of 1 3 105 cells/ml.

Bone marrow was isolated from femur and tibia bones (C57BL/6). Muscles were removed from bones with Delicate Task Wipers

(KIMTECH). Both ends of bones were carefully trimmed to expose the interior marrow shaft. We then used DPBS with 2mM EDTA to

flush the marrow using a 1 mL syringe (with 26G needle). Marrow cavity was flushed 2-3 times to collect the most of the cells. After

gentle pipetting, cells were filtered using 40 mm strainers (Biologix) and collected into a 50mL centrifuge tube. Cells were centrifuged

at 3003 g for 5 min at 4�C and then re-suspended with 5 mL of red blood cell lysis buffer (Biolegend). Cell suspension was incubated

on ice for 5 min with occasional shaking. Lysis reaction was quenched by adding 30mL DPBS with 2mM EDTA. Cells were collected

at 3003 g for 5min at 4�C andwashed 3 times to remove the lysis buffer. Finally, cells were counted with hemocytometer and diluted

with cooled DPBS with 2 mM EDTA to a density of 1 3 105 cells/ ml.

Bone marrow mesenchyme was isolated from femur and tibia bones (C57BL/6). Muscles were removed from bones with Delicate

TaskWipers. Both ends of bones were carefully trimmed to expose the interior marrow shaft. We then used DPBSwith 2mMEDTA to

flush themarrow using 1mL syringe (with 26G needle). Marrowwas collected into a 15mL centrifuge tube. The remaining boneswere

cut into pieces (except for the distal end of the tibia) and grounded inmortar. Bone samples were transferred to a 15ml centrifuge tube

with 1ml of DPBS, centrifuged at 300 3 g for 5 min at 4�C, and re-suspended with 1ml of Hank’s Balanced Salt Solution (HBSS,

GIBCO) containing 3mg/ml collagenase type I (Worthington), 4mg/ml neutral protease and 200U/ml DNase (Sigma). After incubation

at 37�C for 15 min, the tube was vortexed 5 s for three times, and settled on ice for 1 min. The supernatant was transferred to another

15 mL centrifuge tube with 10 mL of cold DPBS. The remaining tissues were re-suspended with 1 mL of HBSS containing 3 mg/ml

collagenase type I, 4 mg/ml neutral protease and 200 U/ml DNase. After incubation at 37�C for 15 min, the tube was vortexed 5 s for

three times, and settled on ice for 1 min. The supernatant was then collected to the same 15mL centrifuge tube. Finally the cells were

collected and re-suspended with 3 mL of DPBS. After passing through a 40 mm strainer, cells were washed twice, counted with a

hemocytometer and diluted to 1 3 105 cells/ml in DPBS with 2 mM EDTA.

For embryonic mesenchymal tissues, E14.5 embryo head, limbs and visceral tissues were removed; the remaining tissues were

minced before single cell dissociation (similar to MEF generation).

For peripheral blood samples, erythroid cells were removed by red blood cell lysis buffer (Batch 2), or Ficoll separation (Batch 1, 3,

4, 5). Note that neutrophil is enriched in Batch 2.

Thymus and spleen were squeezed to pass through a 40 mm strainer using a plunger. Cells were collected into a 15 mL centrifuge

tube, and then centrifuged at 3003 g for 5 min at 4�C. Supernatant was discarded. Cells were re-suspended with 5 mL of red blood

cell lysis buffer. Cell suspension was incubated on ice for 5 min with occasional shaking. Lysis reaction was quenched by adding

30 mL DPBS. Cells were centrifuged at 300 3 g for 5 min at 4�C and washed 3 times to remove the lysis buffer. Then cells were

counted with a hemocytometer and diluted in cold DPBS with 2 mM EDTA at a density of 1 3 105 cells/ml.
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Mesenchymal StemCells (MSCs) were derived fromC57BL/6mouse bonemarrow. In brief, bonemarrow cells from femur and tibia

bones (C57BL/6) were collected and prepared into single cell suspensions. Cells were cultured in L-DMEM media at a density of

13 106/ml on 10mm tissue culture plate (Corning). Culture media were changed after 12 h, and non-attached cells were discarded.

Subsequently, media were changed every 24 h. After 16 days, cells were trypsinized and passaged at the ratio of 1:3. TheMSCswere

passaged every 3-4 days. Singe cell analysis was performed with MSC culture at passage 15.

Embryoid Body (EB) differentiation for mESCs: Cells were harvested by trypsinization, re-suspended in EBMedium (ESCsmedium

without LIF) and seeded into 6-Well Ultra-Low Adherent Plates (Corning) at a density of 23 105 cells per well. Medium was changed

every three days. On day 14, EB single cells were harvested by trypsinization and resuspended in cold DPBS with 2 mM EDTA at a

density of 1 3 105 cells/ml.

Attached differentiation for mESCs:Day 7 EBs were plated on gelatin coated dishes and cultured in differentiation medium (ESC

medium without LIF) for 7 days. Medium was changed every other day. On day 14, cells were harvested by trypsinization and re-

suspended with cold DPBS containing 2 mM EDTA at a density of 1 3 105 cells/ml.

CD45- cells were enriched with MojoSort Mouse CD45 Nanobeads (Biolegend) following the manufacturer’s protocol. For cKit+

cells, bonemarrow cells were suspended in 100 mL of DPBSwith 5%FBS for exposure with cKit antibodies (eBioscience). cKit+ cells

were then sorted with a BD FACSAria II cell sorter. Cells were diluted in DPBS with 2 mM EDTA and filtered through a 40 mm size

strainer before Microwell-seq experiments.

qPCR analysis
EasyPure RNA Kit (Transgen) was used to extract total RNA from cell samples. Total RNA was reverse transcribed into complemen-

tary DNA (cDNA) by TransScript All-in-One First-Strand cDNA Synthesis SuperMix for qPCR kit (Transgen). The diluted cDNA

were used as temples in qPCR performed using Hieff qPCR SYBR� Green Master Mix (Yeasen). The qPCR was performed with

the LightCycler 480 (Roche) system.

Immunofluorescence
EBs were seeded into 0.1% Gelatin-coated dishes (NEST, 35/15mm) for attachment. Attached EBs were fixed in 4% paraformalde-

hyde at room temperature for 30min. Then permeabilized treatment was performed at room temperature for 30min with PBS + 0.2%

Triton X-100. After blocking with PBS + 1% BSA + 4% FBS + 0.4% Triton X-100 at room temperature for 1 h, EBs were incubated

with primary antibodies, diluted in PBS+0.2% BSA+0.1% Triton X-100, at 4�C overnight. After washing, EBs were incubated with

AlexaFluor secondary antibodies (Invitrogen) for 1 h at room temperature. After being washed, EBs were incubated with DAPI for

5 min at room temperature. After the second round of fixation for 30 min, cells were imaged by Olympus FV3000. The primary anti-

bodies used were anti-SOX17 (AF1924, 1:100, R&D) and anti-GATA4 (sc-25310, 1:100, Santa).

Immunohistochemistry
The harvested placentas were fixed in 4% paraformaldehyde at 4�C overnight. The entire placentas were sectioned with a thickness

of 6 mm. Following dewax in xylene and rehydration in graded alcohol solution, the placentas sections were send to Servicebio

(Wuhan) for immunohistochemistry services. The primary antibodies used were anti-SOX17 (AF1924, 1:100, R&D) and anti-

HNF4A (sc-6556, 1:100, Santa).

QUANTIFICATION AND STATISTICAL ANALYSIS

Processing of the Microwell-seq Data
The drop-seq core computational tool was used for preprocessing of the Microwell-seq data. The implementation is described in

the Drop-seq computational cookbook (http://mccarrolllab.com/wp-content/uploads/2016/03/Drop-seqAlignmentCookbookv1.

2Jan2016.pdf). We first filtered out reads without two linkers or poly T sequences using the bbduk2 function in bbmap. A cellular

barcode and unique molecular identifier (UMI) were then extracted from Read One. We discarded the paired reads if the quality

of any base in the barcode was below 10. We used STAR (version 2.5.2a) with default parameters for mapping (Dobin et al.,

2013). Reads from 3T3 cells and 293T cells were aligned to a merged hg19-mm10 genome reference (provided by Drop-seq group,

GSE63269). Reads from MCA data were aligned to the Mus_musculus.GRCm38.88 genome. All multi-aligned reads were removed

and GTF annotation files from Gencode were used to tag aligned reads. For UMI count, molecular barcodes with one edit distance

were merged to one within a gene. For cell quality control, we excluded cells in which less than 500 transcripts were expressed.

A high proportion (> 10%) of transcript counts derived from mitochondria-encoded genes may indicate low cell quality, and

we removed these unqualified cells from the downstream analysis. After obtaining the digital gene expression (DGE) data matrix,

we used Seurat for dimension reduction, clustering and differential gene expression analysis (Satija et al., 2015).

Cell cycle analysis of 293T Cells
We carried out cell cycle analysis of single cell using the method according to dropseq (Macosko et al., 2015). Gene sets reflecting

five phases of the HeLa cell cycle (G1/S, S, G2/M, M andM/G1) were referred fromWhitfield et al. (2002). To find the genes that fit our

293T data, we calculated the correlation between the expression level of each gene and the average expression level of all genes in
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that phase-specific gene set. We excluded genes with a low correlation (R < 0.3). We first calculated the mean of all gene expression

values in each gene set and used themean value as the score for that phase. Then, the phase-specific scores were normalized twice.

First, each phase scores were centered and divided by their standard deviation. Second, we normalized the phase score across all

the phases within each cell by centering and normalizing. The cells were assigned to a cell phase by their maximal phase scores. The

cells were first reordered by cell phase (G1/S, S, G2/M, M and M/G1) and then by the descending phase score.

Batch removal for cross tissue comparison
For cross tissue comparison in Figures 2B, 6B, and 6D,we removed the batch gene background to improve presentation.We assume

that for each batch of experiment, the cell barcodes with less than 500UMI correspond to the empty beads exposed free RNA during

the cell lysis, RNA capture and washing steps. The batch gene background value is defined as the average gene detection for all

cellular barcodes with less than 500 UMI, multiplied by a coefficient of 2, and then rounded to the nearest integer. Genes detected

in less 25% of all cells are removed from the batch gene background list. We subtract the batch gene background for each cell from

the digital expression matrix before making the cross tissue comparison figures.

Cell-cell interaction network
To systematically understand the relationships between different cell types and tissues, we built cell-cell correlation-based networks.

For Figure 6A, we used the reduced dataset with 60,000 cells and 6,298 marker genes of 98 cell clusters. To reduce noise, we aver-

aged every 100 cells within each cell type. We then formed a correlation network using pairwise Spearman correlation between these

averaged cells. Edges with r > 0.75 were considered significant. The network was visualized using Cytoscape (Shannon et al., 2003)

with the ‘‘edge-weighted spring embedded’’ layout.

Comparative analysis of different scRNA-seq methods
We comparedMicrowell-seq with several other scRNA-seq methods about sensibility (Figures S2A and S2B), accuracy (Figure S2C)

and mixed rate (Figure S2D). For Figure S2A, our Cj7 mES data (EmbryonicStemCell.CJ7) were compared with mES data produced

by different technologies (Ziegenhain et al., 2017) within the low (50000 raw reads/cell) to middle (100000 raw reads/cell) range

sequencing depth. Figure S2B presents the number of genes detected (countsR 1) per cell for different methodologies with middle

range sequencing depth (30000-60000 mapped reads/cell). Double sequenced Cj7 mES data (EmbryonicStemCell.CJ7_Deep) is

used in this comparison. 65 cells were randomly sampledwithin the selected data range (Ziegenhain et al., 2017) tomake the boxplot.

For Figure S2C, to assess the quantification accuracy of different methods, we computed the Pearson Correlation Coefficient (R)

between expression values of housekeeping genes (de Jonge et al., 2007; Zhou et al., 2016) in each cell and the average expression

of reference genes for all sampled cells (65 cells) from a method. Data at low (50000 raw reads/cell) sequencing depth from (Ziegen-

hain et al., 2017) and our mES data were selected for the comparison.

Cell type analysis
After selection of the significant differential genes (ave_diff > 1) from each cell type, we compared our subtypes with other published

paper using top differentially expressed markers. The results of cell type analysis were displayed with circlize in R (Gu et al., 2014).

Each connective line represents the same marker genes across different cell subtypes identified by different methods. Data source:

Figure S4A: Kidney fromMCA and Park et al. (2017), Figure S4B: Fetal lung and Adult lung both fromMCA, Figure S4C: Placenta from

MCA and Nelson et al. (2016), Figure S4E: Bran from MCA and Zeisel et al. (2015).

Single cell trajectory analysis
We used p-Creode (Herring et al., 2017) to perform developmental trajectory analysis for cells in placenta and cKit+ bone marrow

(Figures S4D and S4F). For placenta, hematopoietic cells, endothelial cells as well as low quality data (< 500 genes/cell) were

removed. The remaining data were used to construct an unsupervised development trajectory (noise = 10 and target = 30) based

on top 20 differentially expressed marker genes in each cluster. For cKit+ bone marrow, due to the amount of cells, we randomly

sampled 200 cells from each cluster with gene number per cell above the median to construct an unsupervised development trajec-

tory (noise = 12, target = 50). The top 20 differentially expressed marker genes in each cluster were used for the analysis.

MCA website construction
Themain site of theMCA uses the bootstrap framework to improve overall adaptability and interactivity. Its back-end is completed by

PHP, R language, and mysql. The main functions of MCA website is divided into three parts, Gallery, Search and scMCA. Gallery

provides interactive t-SNE maps for 44 tissues to show the distribution of different clusters. Significant markers for each cluster

are listed in a data table. The search part provides the expression of a given gene in different clusters from to any selected tissue.

The scMCA provides the function of single-cell correlation analysis with the MCA database. After users upload their own DGE files,

the data will be processed by the R script and compared with the MCA reference file. The scMCA result will be returned in JSON

format and presented as an interactive heatmap.
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Single cell MCA analysis
To build a scMCA reference, we first normalized each cell to 100K transcripts. And then for each cell type cluster, we randomly

sampled 100 single cells (all cells for clusters with less than 100 cells), calculate the averaged expression, and round the DGE number

to the nearest integer. We constructed the averaged cell type transcriptome data three times for each cell cluster. This resulted in

894 main cell type references in our scMCA pipeline. We then performed differential gene expression analysis for each cell type

against all the other cells and select the top 10 marker genes for each cell type (log-fold change > 1). Markers for each cell types

were merged to make the combined feature gene list. The Pearson correlations of the given single cell data against each MCA

cell type reference were then calculated using the combined feature gene list. Single cell FPKM, RPKM and TPM DGE matrix

were log-transformed before scMCA analysis.

Comparison of scMCA, scmap and randomForest
To compare the quality of different mapping methods, we calculated the accuracy of self-projections corresponding to

randomForest, scMCA and scmap. We used randomForest R package (Liaw and Wiener, 2002), scMCA pipline and scmap R Pack-

age (Kiselev et al., 2017) to build references and run cell typemapping analysis. Figure S7C is based on the 5 datasets including male

fetal gonad, pancreas and spleen data fromMCA, as well as hematopoietic stem cells (Zhou et al., 2016) and preimplantation embryo

data (Deng et al., 2014; Posfai et al., 2017). For each dataset, we randomly chose 80% cells to build the training model, and then use

the remaining 20% cells to fit the model, the pipeline was repeated 3 times for each dataset. The unassigned cells from scmap were

removed. The mapping results were converted into confusion matrix and the accuracy was calculated by the R package caret

(Kuhn, 2008).

DATA AND SOFTWARE AVAILABILITY

Data Resources
The accession number for the raw data files for the RNA sequencing analysis reported in this paper is GEO: GSE108097.

Digital Expression Matrixes are accessible through:

https://figshare.com/s/865e694ad06d5857db4b

An R package for scMCA analysis is available at GitHub (https://github.com/ggjlab/scMCA).
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Figure S1. Microwell Fabrication and Bead Synthesis, Related to Figure 1

(A) The synthesis of barcoded beads. Three split-pool rounds are used to introduce the 3 parts of the oligonucleotides on the beads. In the first split-pool round,

magnetic beads coated with carboxyl groups are distributed randomly into a 96-well plate in which 50 amino-modified oligonucleotides are conjugated to the

beads. Oligonucleotides in each well have a unique barcode sequence. Beads are then pooled and split into another 96-well plate where a second barcode

sequence is introduced by single-cycle PCR. In the final split-pool round, the third barcoded sequence, uniquemolecular identifier (UMI) and polyT tail are added.

After the split-pool, all oligonucleotides on the same bead will have the same cell barcode but a different UMI, while oligonucleotides on different beads will have

different cell barcodes.

(B) The microarray fabrication. The microarray fabrication strategy involves using a silicon microarray chip to construct a micropillar PDMS chip and then an

agarose microarray chip. Both the silicon and PDMS chip are reusable, which greatly reduces cost and saves time.

(C) Full-length oligonucleotide solutions at different concentrations were used to draw a standard curve. There were three replicates for each concentration. The

average CT value of three replicates is shown in the figure.

(D) The oligonucleotide numbers on synthesized beadswere examined by single-bead qPCR. The results of a single-bead qPCR experiment. Eleven single beads

were picked out for single-bead qPCR. The results showed that �108 oligonucleotides were conjugated to every bead.
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Figure S2. Validation of the Microwell-Seq Platform, Related to Figure 1

(A) Reads (mapped) to a gene plot for themES experiments using different platforms. Our Cj7mESmicrowell-seq data were comparedwith a series of mES single

cell data obtained using different technologies (Ziegenhain et al., 2017). Microwell-seq shows an advantage in the low (50000 raw reads/cell) to middle (100000

raw reads/cell) range sequencing depth.

(B) Number of genes detected (countsR 1) per cell for different methodologies with middle range sequencing depth (30000-60000 mapped reads/cell). Double

sequencedCj7mES data were comparedwith a series of mES single cell data obtained using different technologies (Ziegenhain et al., 2017). Each dot represents

a cell, and each box represents the median and first and third quartiles of replicates.

(C) Accuracy of scRNA-seqmethods. Our Cj7mESmicrowell-seq data were compared with a series of mES single cell data obtained using different technologies

(Ziegenhain et al., 2017). Data at low (50000 reads/cell) sequencing depth were selected for the comparison. Correlations of reference gene expression values

(counts per million reads for Smart-seq/C1 and Smart-seq2 and UMIs per million reads for all others) between single-cell expression and mean expression are

calculated for each cell. Distributions of Pearson correlations (R) are shown for eachmethod. Each dot represents a cell, and each box represents themedian and

first and third quartiles of replicates.

(D) Mixed rate for the species mixing experiments using different platforms.

(E) Cost efficiency for different single-cell RNA-seq methodologies.

(F) Heatmap of 4323 thawedmPBCD34+ andmPBCD34- cells. CD34+ andCD34- cells were clearly clustered into twomega groups. Various subclusters can be

observed in the CD34+ and CD34- mega groups.

(G) Thawed mPB CD34+ cells from batch 1 (B1) and batch 2 (B2) are visualized on a t-SNE map.
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Figure S3. Snapshots of the Mouse Cell Atlas Website and Representative Data, Related to Figure 2

(A and B) Snapshots of the Mouse Cell Atlas website.

(C) and (D) t-SNE maps of mES (C) and mTS (D) single cell data. Cells are colored by cell type cluster.

(E) Dot plot visualization of each cell type in kidney single-cell data. The size of the dot encodes the percentage of cells within a cell type, and the color encodes the

average expression level.
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Figure S4. Comparison of MCA Data with Other Available Datasets, Related to Figure 3

(A) A Circos plot showing overlap of cell types and markers between MCA kidney data and the prepublished kidney single cell data (Park et al., 2017). Correlated

cell types are connected by lines. Representative marker genes are listed outside of the circle.

(B). A Circos plot showing overlap of cell types and markers between MCA adult lung data and MCA fetal lung data. Similar cell types are connected by lines

indicating same marker gene expression. Representative marker genes are listed outside of the circle.

(C) A Circos plot showing overlap of cell types and markers between MCA placenta data and the published placenta single cell data (Nelson et al., 2016). Similar

cell types are connected by lines indicating same marker gene expression. Representative marker genes are listed outside of the circle.

(D) Development trajectory of placenta single cells constructed by p-Creode (Herring et al., 2017).

(E) A Circos plot showing overlap of cell types and markers betweenMCA neonatal brain data and the published cortex and hippocampus single cell data (Zeisel

et al., 2015). Similar cell types are connected by lines indicating same marker gene expression. Representative marker genes are listed outside of the circle.

(F) Development trajectory of ckit+ bone marrow single cell data constructed by p-Creode.
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Figure S5. t-SNE Maps for Analyzed MCA Tissues, Related to Figure 5

t-SNE maps for single-cell data from cKit+ bone marrow, bladder, brain, embryonic mesenchyme, uterus, mammary gland involution, muscle, and ovary. Cells

are colored by cell-type cluster.
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Figure S6. t-SNE Maps for Analyzed MCA Tissues, Related to Figure 5

t-SNE maps for single-cell data from fetal lung, neonatal heart, neonatal muscle, neonatal rib, neonatal skin, liver, fetal stomach, and small intestine. Cells are

colored by cell-type cluster.
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Figure S7. Testing of scMCA Pipeline, Related to Figure 7

(A and B) Mapping efficiency of single cells from defined cell-type clusters when using Top2, Top3, Top5, Top10, Top15 and Top20 markers for each of the cell

type references.

(C) Accuracy of single-cell mapping algorithms for different available methods. RF: Random Forests (Liaw and Wiener, 2002). scmap: pipeline adopted from the

prepublished study (Kiselev et al., 2017). Each box represents the median and first and third quartiles of replicates for different methods. RF: RandomForest.

(D) scMCA result of placenta Afp-high endodermal cell data. Each row represents one cell type in our reference. Each column represents one single cell in the

customer dataset. Red means high correlation; gray means low correlation.

(E) scMCA result of mouse neuronal differentiation data (Rizvi et al., 2017). Each row represents one cell type in our reference. Each column represents one single

cell in the customer dataset. Red means high correlation; gray means low correlation.

(F) scMCA result of mouse fibroblast to neuron transdifferentiation data (Treutlein et al., 2016). Each row represents one cell type in our reference. Each column

represents one single cell in the customer dataset. Red means high correlation; gray means low correlation.

(G and H) QPCR analysis of extraembryonic lineage markers expressed during EB and attached differentiation of WT and Ezh2�/� mES cells.
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